Comparative analysis of seven machine learning algorithms and five empirical models to estimate soil thermal conductivity
نویسندگان
چکیده
Soil thermal conductivity (λ) is an important property that crucial for surface energy balance and water studies. 1602 measured soil values representing 189 soils were used to evaluate five empirical models (i.e., de Vries (1963) model (de 1963), Campbell (1985) (Campbell1985), Johansen (1975) (Johansen 1975), Côté Konrad (2005) (Côté 2005), Lu et al. (2007) (Lu 2007)) seven machine learning (ML) algorithms Decision Tree (DT), Random Forest (RF), Gradient Boosting (GBDT), Linear Regression (LR), K-Nearest Neighbors (KNN), Neural Network (NN), Gaussian Process (GP)) estimate λ. Our results demonstrated the average root mean squared error (RMSE) of ML 66% 82% on validation test sets respectively. The three best (GBDT, NN, RF) performed significantly better than 2007, 2005, 1975): 0.183 < RMSE 0.259 (W m−1 K−1) 0.293 0.320 models. For ML, we recommend GBDT, NN RF algorithms. models, use normalized 1975) over physically-based (DV1963) regression (CG1985). feature importance rankings by GBDT show moisture content bulk density are most critical factors affecting together account more 80% influence value gives consistent ranking therefore, selecting features.
منابع مشابه
Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملthermal conductivity of water-based nanofluids: prediction and comparison of models using machine learning
statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. this paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. the thermal conductivity of nanofluids increases with the volume fraction and temperature. machine learni...
متن کاملa comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation
هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Agricultural and Forest Meteorology
سال: 2022
ISSN: ['1873-2240', '0168-1923']
DOI: https://doi.org/10.1016/j.agrformet.2022.109080